4.7 Article

An error model for protein quantification

向作者/读者索取更多资源

Motivation: Quantitative experimental data is the critical bottleneck in the modeling of dynamic cellular processes in systems biology. Here, we present statistical approaches improving reproducibility of protein quantification by immunoprecipitation and immunoblotting. Results: Based on a large data set with more than 3600 data points, we unravel that the main sources of biological variability and experimental noise are multiplicative and log-normally distributed. Therefore, we suggest a log-transformation of the data to obtain additive normally distributed noise. After this transformation, common statistical procedures can be applied to analyze the data. An error model is introduced to account for technical as well as biological variability. Elimination of these systematic errors decrease variability of measurements and allow for a more precise estimation of underlying dynamics of protein concentrations in cellular signaling. The proposed error model is relevant for simulation studies, parameter estimation and model selection, basic tools of systems biology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据