4.5 Article

The linker region plays a key role in the adaptation to cold of the cellulase from an Antarctic bacterium

期刊

BIOCHEMICAL JOURNAL
卷 407, 期 -, 页码 293-302

出版社

PORTLAND PRESS LTD
DOI: 10.1042/BJ20070640

关键词

cellulase; linker; Pseudoalteromonas haloplanktis; psychrophile; small-angle X-ray scattering (SAXS)

向作者/读者索取更多资源

The psychrophilic cellulase, Cel5G, from the Antarctic bacterium Pseudoalteromonas haloplanktis is composed of a catalytic module (CM) joined to a carbohydrate-binding module (CBM) by an unusually long, extended and flexible linker region (LR) containing three loops closed by three disulfide bridges. To evaluate the possible role of this region in cold adaptation, the LR was sequentially shortened by protein engineering, successively deleting one and two loops of this module, whereas the last disulfide bridge was also suppressed by replacing the last two cysteine residue by two alanine residues. The kinetic and thermodynamic properties of the mutants were compared with those of the full-length enzyme, and also with those of the cold-adapted CM alone and with those of the homologous mesophilic enzyme, Cel5A, from Erwinia chrysanthemi. The thermostability of the mutated enzymes as well as their relative flexibility were evaluated by differential scanning calorimetry and fluorescence quenching respectively. The topology of the structure of the shortest mutant was determined by SAXS (small-angle X-ray scattering). The data indicate that the sequential shortening of the LR induces a regular decrease of the specific activity towards macromolecular substrates, reduces the relative flexibility and concomitantly increases the thermostability of the shortened enzymes. This demonstrates that the long LR of the full-length enzyme favours the catalytic efficiency at low and moderate temperatures by rendering the structure not only less compact, but also less stable, and plays a crucial role in the adaptation to cold of this cellulolytic enzyme.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据