4.8 Article

Self-assembly of multidomain peptides: Balancing molecular frustration controls conformation and nanostructure

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 129, 期 41, 页码 12468-12472

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja072536r

关键词

-

向作者/读者索取更多资源

A series of nine, frustrated, multidomain peptides is described in which forces favoring selfassembly into a nanofiber versus those favoring disassembly could be easily modified. The peptides are organized into an ABA block motif in which the central B block is composed of alternating hydrophilic and hydrophobic amino acids (glutamine and leucine, respectively). This alternation allows the amino acid side chains to segregate on opposite sides of the peptide backbone when it is in a fully extended P-sheet conformation. In water, packing between two such peptides stabilizes the extended conformation by satisfying the desire of the leucine side chains to exclude themselves from the aqueous environment. Once in this conformation intermolecular backbone hydrogen bonding can readily take place between additional pepticles eventually growing into high aspect ratio fibers. B block assembly may continue infinitely or until monomeric pepticles are depleted from solution which results in an insoluble precipitate. Block A consists of a variable number of positively charged lysine residues whose electrostatic repulsion at pH 7 works against the desire of the B block to assemble. Here we show that balancing the forces of block A against B allows the formation of controlled length, individually dispersed, and fully soluble nanofibers with a width of 6 +/- 1 nm and length of 120 1 30 nm. Analysis by infrared, circular dichroism, and vitreous ice cryo-transmission electron microscopy reveals that the relative sizes of blocks A and B dictate the peptide secondary structure which in turn controls the resulting nanostructure. The system described epitomizes the use of molecular frustration in the design of finite self-assembled structures. These materials, and ones based on their architecture, may find applications where nanostructured control over fiber architecture and chemical functionality is required.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据