4.8 Article

Efficient and selective cleavage of RNA Oligonucleotides by calix[4]arene-based synthetic metallonucleases

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 129, 期 41, 页码 12512-12520

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja0737366

关键词

-

向作者/读者索取更多资源

Di- and trinuclear copper(II) complexes of [12]aneN3 macrocycles anchored at the upper rim of cone calix[4]arenes in 1,2-, 1,3-, and 1,2,3-positions were investigated as cleaving agents of 6-, 7-, and 17-meric oligoribonucleotides. A kinetic investigation of the cleavage reactions was carried out using gel electrophoresis to separate and analyze reactants and products having a radioactive phosphate label in the terminal 5'-position. The degree of cooperation was assessed on the basis of a comparison with rates of cleavage by mononuclear controls. A remarkable selectivity of cleavage of the CpA phosphodiester bond was observed for all metal complexes, in sharp contrast with the UpU and UpG selectivity previously observed in the cleavage of diribonucleoside monophosphates by the same metal complexes. The highest rate acceleration, brought about in the cleavage of the 5'-pCpA bond in hexanucleotide 9 by 50,uM trinuclear complex 5-CU3 (water solution, pH 7.4, 50 degrees C), amounts to 5 x 10(5)-fold, as based on the estimated background reactivity of the CpA dimer. Selectivity in the cleavage of oligoribonucleotides by copper(II) complexes closely resembles that experienced by ribonuclease A and by a number of metal-independent RNase A mimicks. The possible role of the dianionic phosphate at the 5'-terminal positions as a primary anchoring site for the metal catalyst is discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据