4.4 Article

Carbon cycling by seafloor communities on the eastern Beaufort Sea shelf

期刊

出版社

ELSEVIER
DOI: 10.1016/j.jembe.2007.05.021

关键词

benthos; bottom photography; climate change; epifauna; macrofauna; sediment carbon demand

向作者/读者索取更多资源

Tight pelagic-benthic coupling on Arctic shelves suggests that resident benthic communities may be particularly important in the cycling of carbon and regeneration of nutrients. We sampled 16 stations in the eastern Beaufort Sea during Autumn 2003 and Summer 2004 to determine spatial patterns in sediment community carbon demand, and the manner in which that demand was partitioned among epifauna, macroinfauna, and meio-/microfauna. Sediment carbon demand in this relatively oligotrophic area was similar to that measured in more productive Arctic shelf sites, and was largely related to the distribution of phytodetritus in surface sediments. Epibenthic megafaunal communities were dominated by echinoderms and exhibited peak abundance (up to 240 ind. m(-2)) and biomass at stations in the 60-90 m depth range. Partitioning of the carbon demand revealed the local importance of megafauna, accounting for up to 41% of the community demand. Macrofauna accounted for on average between 25 and 69% of the carbon demand, while meio-/microfauna were responsible for 31-75% of the demand. Total community carbon demand by the benthos is estimated to account for approximately 60% of the annual new production in the region, suggesting the great ecosystem importance of benthic communities on the Beaufort shelf, and potentially across the Arctic. Our study region is strongly influenced by the Mackenzie River, and ongoing climate change is likely to result in altered productivity regimes, changes in quality and quantity of available food, and higher levels of sediment deposition. Impacts of these events on benthic community structure and function will likely have repercussions throughout the ecosystem. (C) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据