4.6 Article

Mps1 activation loop autophosphorylation enhances kinase activity

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 282, 期 42, 页码 30553-30561

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M707063200

关键词

-

资金

  1. NCI NIH HHS [R01 CA87648] Funding Source: Medline
  2. NIGMS NIH HHS [GM07135, GM51312] Funding Source: Medline

向作者/读者索取更多资源

The Mps1 protein kinase is required for proper assembly of the mitotic spindle, checkpoint signaling, and several other aspects of cell growth and differentiation. Mps1 regulation is mediated by cell cycle-dependent changes in transcription and protein level. There is also a strong correlation between hyper-phosphorylated mitotic forms of Mps1 and increased kinase activity. We investigated the role that autophosphorylation plays in regulating human Mps1 (hMps1) protein kinase activity. Here we report that hyperphosphorylated hMps1 forms are not the only active forms of the kinase. However, autophosphorylation of hMps1 within the activation loop is required for full activity in vitro. Mass spectrometry analysis of de novo synthesized enzyme in Escherichia coli identified autophosphorylation sites at residues Thr(675), Thr(676), and Thr(686), but phosphatase-treated and reactivated enzyme was only phosphorylated on Thr(676). Mutation of Thr(676) in hMps1 or the corresponding Thr(591) residue within yeast Mps1 reduces kinase activity in vitro. We find that overexpression of an hMps1-T676A mutation inhibits centrosome duplication in RPE1 cells. Likewise, yeast cells harboring mps1-T591A as the sole MPS1 allele are not viable. Our data strongly support the conclusion that site-specific Mps1 autophosphorylation within the activation loop is required for full activity in vitro and function in vivo.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据