4.7 Article

Applications of Wang-Landau sampling to determine phase equilibria in complex fluids

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 127, 期 15, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.2794042

关键词

-

资金

  1. EPSRC [EP/D002656/1] Funding Source: UKRI
  2. Engineering and Physical Sciences Research Council [EP/D002656/1] Funding Source: researchfish

向作者/读者索取更多资源

Applications of the Wang-Landau algorithm for simulating phase coexistence at fixed temperature are presented. The number density is sampled using either volume scaling or particle insertion/deletion. The resulting algorithms, while being conceptually easy, are of comparable efficiency to existing multicanonical methods but with the advantage that neither the chemical potential nor the pressure at phase coexistence has to be estimated in advance of the simulation. First, we benchmark the algorithm against literature results for the vapor-liquid transition in the Lennard-Jones fluid. We then demonstrate the general applicability of the algorithm by studying vapor-liquid coexistence in two examples of complex fluids: charged soft spheres, which exhibit a transition similar to that in the restricted primitive model of ionic fluids, being characterized by strong ion pairing in the vapor phase; and Stockmayer fluids with high dipole strengths, in which the constituent particles aggregate to form chains, and for which the very existence of a transition has been widely debated. Finally, we show that the algorithm can be used to locate a weak isotropic-nematic transition in a fluid of Gay-Berne mesogens. (C) 2007 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据