4.6 Article

Magnetic field enhanced thermal conductivity in heat transfer nanofluids containing Ni coated single wall carbon nanotubes

期刊

APPLIED PHYSICS LETTERS
卷 91, 期 17, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2801507

关键词

-

向作者/读者索取更多资源

In this paper, we report that the thermal conductivity (TC) of heat transfer nanofluids containing Ni coated single wall carbon nanotube can be enhanced by applied magnetic field. A reasonable explanation for these interesting results is that Ni coated nanotubes form aligned chains under applied magnetic field, which improves thermal conductivity via increased contacts. On longer holding in magnetic field, the nanotubes gradually move and form large clumps of nanotubes, which eventually decreases the TC. When we reduce the magnetic field strength and maintain a smaller field right after TC reaches the maximum, the TC value can be kept longer compared to without magnetic field. We attribute gradual magnetic clumping to the gradual cause of the TC decrease in the magnetic field. We also found that the time to reach the maximum peak value of TC is increased as the applied magnetic field is reduced. Scanning electron microscopy images show that the Ni coated nantubes are aligned well under the influence of a magnetic field. Transmission electron microscopy images indicate that nickel remains attached onto the nanotubes after the magnetic field exposure. (C) 2007 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据