4.5 Article

Disruption of a novel regulatory locus results in decreased Bdnf expression, obesity, and type 2 diabetes in mice

期刊

PHYSIOLOGICAL GENOMICS
卷 31, 期 2, 页码 252-263

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/physiolgenomics.00093.2007

关键词

brain-derived neurotrophic factor; gene regulation; insulin resistance

向作者/读者索取更多资源

Mutants of brain-derived neurotrophic factor ( BDNF) are associated with obesity. However, the regulatory mechanism of BDNF expression is still unclear. We developed a novel mutant mouse line, transgenic insertional mutants with obesity, named Timo, in which a potential regulatory locus of Bdnf was disrupted by transgene insertion. The insertion site was identified and lies 857 kb upstream of the Bdnf gene. The disrupted genomic locus is conserved across the mouse, rat, dog, and human genome and contains several highly conserved elements that are able to upregulate reporter gene expression in vitro. Along with downregulation of BDNF to similar to 30% of wild-type animals, Timo/Timo mice exhibited increased body weight and fat content with hepatic steatosis and elevated serum levels of leptin, cholesterol, and LDL cholesterol. These mutant mice also showed obesity-independent insulin resistance, hyperinsulinemia, impaired glucose tolerance, age-dependent hyperglycemia, and shortened life span. Molecular and phenotype analysis of Timo/Timo mice indicated the existence of a genome locus, lying 857 kb upstream of the Bdnf gene, that regulates BDNF expression, body weight, and glucose homeostasis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据