4.8 Article

Bld10p constitutes the cartwheel-spoke tip and stabilizes the 9-fold symmetry of the centriole

期刊

CURRENT BIOLOGY
卷 17, 期 20, 页码 1778-1783

出版社

CELL PRESS
DOI: 10.1016/j.cub.2007.09.021

关键词

-

向作者/读者索取更多资源

Centrioles/basal bodies have a characteristic cylindrical structure consisting of nine triplet microtubules arranged in a rotational symmetry. How this elaborate structure is formed is a major unanswered question in cell biology [1, 2]. We previously identified a 170 kDa coiled-coil protein essential for the centriole formation in Chlamydomonas. This protein, Bld10p, is the first protein shown to localize to the cartwheel, a 9-fold symmetrical structure possibly functioning as the scaffold for the centriole-microtubule assembly [3]. Here, we report results by using a series of truncated Bld10p constructs introduced into a bld10 null mutant. Remarkably, a transformant (Delta C2) in which 35% of Bld10p at the C terminus was deleted assembled centrioles with eight symmetrically arranged triplets, in addition to others with the normal nine triplets. The cartwheels in these eight-membered centrioles had spokes similar to 24% shorter than those in the wildtype, suggesting that the eight-triplet centrioles were formed because the cartwheel's smaller diameter. From the morphology of the cartwheel spoke in the Delta C2 centriole and immunoelectron-microscope localization, we conclude that Bld10p is a major spoke-tip component that extends the cartwheel diameter and attaches triplet microtubules. These results provide the first experimental evidence for the crucial function of the cartwheel in centriolar assembly.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据