3.8 Article

The structure of Mycobacteria 2C-methyl-D-erythritol-2,4-cyclodiphosphatesynthase, an essential enzyme, provides a platform for drug discovery

期刊

BMC STRUCTURAL BIOLOGY
卷 7, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1472-6807-7-68

关键词

-

向作者/读者索取更多资源

Background: The prevalence of tuberculosis, the prolonged and expensive treatment that this disease requires and an increase in drug resistance indicate an urgent need for new treatments. The 1-deoxy-D-xylulose5-phosphate pathway of isoprenoid precursor biosynthesis is an attractive chemotherapeutic target because it occurs in many pathogens, including Mycobacterium tuberculosis, and is absent from humans. To underpin future drug development it is important to assess which enzymes in this biosynthetic pathway are essential in the actual pathogens and to characterize them. Results: The fifth enzyme of this pathway, encoded by ispF, is 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase (IspF). A two-step recombination strategy was used to construct ispF deletion mutants in M. tuberculosis but only wild-type double crossover strains were isolated. The chromosomal copy could be deleted when a second functional copy was provided on an integrating plasmid, demonstrating that ispF is an essential gene under the conditions tested thereby confirming its potential as a drug target. We attempted structure determination of the M. tuberculosis enzyme (MtlspF), but failed to obtain crystals. We instead analyzed the orthologue M. smegmatis IspF (MslspF), sharing 73% amino acid sequence identity, at 2.2 angstrom resolution. The high level of sequence conservation is particularly pronounced in and around the active site. MslspF is a trimer with a hydrophobic cavity at its center that contains density consistent with diphosphate-containing isoprenoids. The active site, created by two subunits, comprises a rigid CDP-Zn2+ binding pocket with a flexible loop to position the 2C-methyl-D-erythritol moiety of substrate. Sequence-structure comparisons indicate that the active site and interactions with ligands are highly conserved. Conclusion: Our study genetically validates MtlspF as a therapeutic target and provides a model system for structure-based ligand design.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据