4.7 Article

A molecular dynamics simulation study on polymer networks of end-linked flexible or rigid chains

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 127, 期 16, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2790007

关键词

-

向作者/读者索取更多资源

The differences in formation and structural properties of polymer networks consisting of end-linked flexible or rigid chains were studied by molecular dynamics simulation. Networks were formed from monodisperse, linear, short, flexible or rigid chains with functional end groups and a stoichiometric ratio of trifunctional cross-linkers. The rigid chains had a rodlike shape defined by an angle potential, while the flexible chains had no angle potential. In order to understand the influence of chain rigidity, all parameters of precursor chains (length, reactivity, bond potential, nonbonding potential) were the same, with the exception of the angle potential. The system density rho, corresponding to the concentration of monomer in solvent, was varied from 0.01 to 0.11. Different network structures resulting from the different processes of network formation were observed. Simulations showed that the flexible chains created an inhomogeneous network on a large scale via microgel cluster formation, in agreement with experimental observations, whereas the rigid chains rapidly created a homogeneous network in the entire system volume without first generating microgel clusters, with the additional difference that they gave rise to mutually interpenetrating networks at the local scale. (C) 2007 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据