4.6 Article

Optofluidic trapping and transport on solid core waveguides within a microfluidic device

期刊

OPTICS EXPRESS
卷 15, 期 22, 页码 14322-14334

出版社

OPTICAL SOC AMER
DOI: 10.1364/OE.15.014322

关键词

-

类别

向作者/读者索取更多资源

In this work we demonstrate an integrated microfluidic/photonic architecture for performing dynamic optofluidic trapping and transport of particles in the evanescent field of solid core waveguides. Our architecture consists of SU-8 polymer waveguides combined with soft lithography defined poly(dimethylsiloxane) (PDMS) microfluidic channels. The forces exerted by the evanescent field result in both the attraction of particles to the waveguide surface and propulsion in the direction of optical propagation both perpendicular and opposite to the direction of pressure-driven flow. Velocities as high as 28 mu m/s were achieved for 3 mu m diameter polystyrene spheres with an estimated 53.5 mW of guided optical power at the trapping location. The particle-size dependence of the optical forces in such devices is also characterized. (C) 2007 Optical Society of America.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据