4.6 Article

Significant and Systematic Expression Differentiation in Long-Lived Yeast Strains

期刊

PLOS ONE
卷 2, 期 10, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0001095

关键词

-

资金

  1. NIH [R01 GM75308-01, P50 HG002790]
  2. Center of Excellence in Genome Science at University of Southern California

向作者/读者索取更多资源

Background. Recent studies suggest that the regulation of longevity may be partially conserved in many eukaryotes ranging from yeast to mammals. The three yeast mutants sch9 Delta, ras2 Delta, tor1 Delta show extended chronological life span up to three folds. Our aim is to dissect the mechanisms that lead to the yeast life span extension. Methodology/Principal Findings. We obtain gene expression profiles of sch9 Delta, ras2 Delta, tor1 Delta as well as that for a wild type at day 2.5 in SDC medium using Affymetrix Yeast2.0 arrays. To accurately estimate the expression differentiation between the wild type and the long-lived mutants, we use sub-array normalization followed by a variant of the median-polishing summarization. The results are validated by the probe sets of S. pombe on the same chips. To translate the differentiation into changes of biological activities, we make statistical inference by integrating the expression profiles with biological gene subsets defined by Gene Ontology, KEGG pathways, and cellular localization of proteins. Other than subset-versus-other comparisons, we also make local comparisons between two directly-related gene subsets such as cytosolic and mitochondrial ribosomes. Our consensus is obtained by cross-examination of these inferences. The significant and systematic differentiation in the three long-lived strains includes: lower transcriptional activities; down-regulation of TCA cycle and oxidative phosphorylation versus up-regulation of the KEGG pathway Glycolysis/Gluconeogenesis; the overall reduction of mitochondrial activities. We also report some different expression patterns such as reduction of the activities relating to mitosis in ras2 Delta. Conclusions/Significance. The modification of energy pathways and modification of compartment activities such as down-regulation of mitochondrial ribosome proteins versus up-regulation of cytosolic ribosome proteins are directly associated with the life span extension in yeast. The results provide a new and systematic S. cerevisiae version of the free radical theory from the perspective of functional genomics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据