4.8 Article

The optimum average nanopore size for hydrogen storage in carbon nanoporous materials

期刊

CARBON
卷 45, 期 13, 页码 2649-2658

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2007.08.003

关键词

-

向作者/读者索取更多资源

A thermodynamical model of hydrogen storage in slitpores is presented and applied to carbon and BN nanoporous materials. The model accounts for the quantum effects of the molecules in the confining potential of the slitpores. A feature of the model is a new equation of state (EOS) of hydrogen, valid over a range of pressures wider than any other known EOS, obtained using experimental data in the range 77-300 K and 0-1000 MPa, including data in the region of solid hydrogen. The model reproduces the experimental hydrogen storage properties of different samples of activated carbons and carbide-derived carbons at 77 and 298 K and at pressures between 0 and 20 MPa, for an average nanopore width of about 5 angstrom. The model predicts that in order to reach the US Department of Energy hydrogen storage targets for 2010, the nanopore widths should be equal to or larger than 5.6 angstrom for applications at low temperatures, 77 K, and any pressure, and about 6 angstrom for applications at 300 K and at least 10 MPa. (C) 2007 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据