4.6 Article Proceedings Paper

Shock compression of monocrystalline copper: Atomistic Simulations

向作者/读者索取更多资源

Molecular dynamics (MD) simulations were used to model the effects of shock compression on [001] and [221] monocrystals. We obtained the Hugoniot for both directions, and analyzed the formation of a two-wave structure for the [221] monocrystal. We also analyzed the dislocation structure induced by the shock compression along these two crystal orientations. The topology of this structure compares extremely well with that observed in recent transmission electron microscopy (TEM) studies of shock-induced plasticity in samples recovered from flyer plate and laser shock experiments. However, the density of stacking faults in our simulations is 10(2) to 10(4) times larger than in the experimental observations of recovered samples. The difference between experimentally observed TEM and calculated MD results is attributed to two effects: (1) the annihilation of dislocations during post-shock relaxation (including unloading) and recovery processes and (2) a much shorter stress rise time at the front in MD ( < 1 ps) in comparison with flyer-plate shock compression (similar to 1ns).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据