4.7 Article

Electroneutrality and phase behavior of colloidal suspensions

期刊

PHYSICAL REVIEW E
卷 76, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.76.051401

关键词

-

向作者/读者索取更多资源

Several statistical mechanical theories predict that colloidal suspensions of highly charged macroions and monovalent microions can exhibit unusual thermodynamic phase behavior when strongly deionized. Density-functional, extended Debye-Huckel, and response theories, within mean-field and linearization approximations, predict a spinodal phase instability of charged colloids below a critical salt concentration. Poisson-Boltzmann cell model studies of suspensions in Donnan equilibrium with a salt reservoir demonstrate that effective interactions and osmotic pressures predicted by such theories can be sensitive to the choice of reference system, e.g., whether the microion density profiles are expanded about the average potential of the suspension or about the reservoir potential. By unifying Poisson-Boltzmann and response theories within a common perturbative framework, it is shown here that the choice of reference system is dictated by the constraint of global electroneutrality. On this basis, bulk suspensions are best modeled by density-dependent effective interactions derived from a closed reference system in which the counterions are confined to the same volume as the macroions. Lower-dimensional systems (e.g., monolayers, clusters), depending on the strength of macroion-counterion correlations, may be governed instead by density-independent effective interactions tied to an open reference system with counterions dispersed throughout the reservoir, possibly explaining the observed structural crossover in colloidal monolayers and anomalous metastability of colloidal crystallites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据