4.4 Article

Reactive oxygen species generation by the ethylene-bis-dithiocarbamate (EBDC) fungicide mancozeb and its contribution to neuronal toxicity in mesencephalic cells

期刊

NEUROTOXICOLOGY
卷 28, 期 6, 页码 1079-1091

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.neuro.2007.04.008

关键词

fungicide; oxidative stress; Parkinson's disease; manganese; NADPH oxidase

资金

  1. NIEHS NIH HHS [ES07148, T32 ES007148] Funding Source: Medline
  2. NINDS NIH HHS [R01 NS036157-07] Funding Source: Medline

向作者/读者索取更多资源

Previous in vitro studies in our laboratory have shown that mancozeb (MZ) and maneb (MB), both widely used EBDC fungicides, are equipotent neurotoxicants that produce cell loss in mesencephalic dopaminergic and GABAergic cells after an acute 24 h exposure. Mitochondrial uncoupling and inhibition were associated with fungicide exposure. Inhibition of mitochondrial respiration is known to increase free radical production. Here the mechanism(s) of neuronal damage associated with MZ exposure was further explored by determining the role that reactive oxygen species (ROS) played in toxicity. Damage to mesencephalic dopamine and GABA cell populations were significantly attenuated when carried out in the presence of ascorbate or SOD, indicative of a free radical-mediated contribution to toxicity. ROS generation monitored by hydrogen peroxide (H2O2) production using Amplex Red increased in a dose-dependent manner in response to MZ. Inhibition of intracellular catalase with aminotriazole had little effect on H2O2 generation, whereas exogenously added catalase significantly reduced H2O2 production, demonstrating a large extracellular contribution to ROS generation. Conversely, cells preloaded with the ROS indicator dye DCF showed significant MZ-induced ROS production, demonstrating an increase in intracellular ROS. Both the organic backbone of MZ as well as its associated Mn ion, but not Zn ion, were responsible and required for H2O2 generation. The functionally diverse NADPH oxidase inhibitors, diphenylene iodonium chloride, apocynin, and 4-(2-aminoethyl)benzene-sulfonyl fluoride hydrochloride significantly attenuated H2O2 production by MZ. In growth medium lacking cells, MZ produced little H2O2, but enhanced H2O2 generation when added with xanthine plus xanthine oxidase whereas, in cultured cells, allopurinol partially attenuated H(2)o(2) production by MZ. Minocycline, an inhibitor of microglial activation, modestly reduced H2O2 formation in mesencephalic cells. In contrast, neuronal-enriched cultures or cultures treated with MAC-1-SAP to kill microglia, did not show an attenuation of ROS production. These findings demonstrate that Mn-containing EBDC fungicides such as MZ and MB can produce robust ROS generation that likely occurs via redox cycling with extracellular and intracellular oxidases. The findings further show that microglia may contribute to but are not required for ROS production by MZ. (c) 2007 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据