4.7 Article

Complex network synchronizability: Analysis and control

期刊

PHYSICAL REVIEW E
卷 76, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.76.056103

关键词

-

向作者/读者索取更多资源

In this paper, the investigation is first motivated by showing two examples of simple regular symmetrical graphs, which have the same structural parameters, such as average distance, degree distribution, and node betweenness centrality, but have very different synchronizabilities. For a given network with identical node dynamics, it is further shown that two key factors influencing the network synchronizability are the network inner linking matrix and the eigenvalues of the network topological matrix. Several examples are then provided to show that adding new edges to a network can either increase or decrease the network synchronizability. In searching for conditions under which the network synchronizability may be increased by adding edges, it is found that for networks with disconnected complementary graphs, adding edges never decreases their synchronizability. Moreover, it is found that an unbounded synchronized region is always easier to analyze than a bounded synchronized region. Therefore to effectively enhance the network synchronizability, a design method is finally presented for the inner linking matrix of rank 1 such that the resultant network has an unbounded synchronized region, for the case where the synchronous state is an equilibrium point of the network.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据