4.5 Article

MOTGA: A multiobjective Tchebycheff based genetic algorithm for the multidimensional knapsack problem

期刊

COMPUTERS & OPERATIONS RESEARCH
卷 34, 期 11, 页码 3458-3470

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.cor.2006.02.008

关键词

genetic algorithms; multiple objective programming; knapsack problem

向作者/读者索取更多资源

This paper presents a new multiobjective genetic algorithm based on the Tchebycheff scalarizing function, which aims to generate a good approximation of the nondominated solution set of the multiobjective problem. The algorithm performs several stages, each one intended for searching potentially nondominated solutions in a different part of the Pareto front. Pre-defined weight vectors act as pivots to define the weighted-Tchebycheff scalarizing functions used in each stage. Therefore, each stage focuses the search on a specific region, leading to an iterative approximation of the entire nondominated set. This algorithm, called MOTGA (Multiple objective Tchebycheff based Genetic Algorithm) has been designed to the multiobjective multidimensional 0/1 knapsack problem, for which a dedicated routine to repair infeasible solutions was implemented. Computational results are presented and compared with the outcomes of other evolutionary algorithms. (C) 2006 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据