4.6 Article

Size comparison between proteins PEGylated with branched and linear Poly(Ethylene glycol) molecules

期刊

BIOTECHNOLOGY AND BIOENGINEERING
卷 98, 期 4, 页码 725-731

出版社

WILEY
DOI: 10.1002/bit.21482

关键词

protein PEGylation; branched; linear; viscosity radius; size exclusion chromatography; glomerular filtration

向作者/读者索取更多资源

Therapeutic proteins conjugated with branched poly(ethylene glycol) (PEG) have extended in vivo circulation half-lives compared to linear PEG-proteins, thought to be due partly to a greater hydrodynamic volume of branched PEG-proteins, which reduces the glomerular sieving coefficient. In this paper, viscosity radii of PEGylated a-lactalbumin (M-r = 14.2 kDa) and bovine serum albumin (M-r = 67 kDa) prepared with linear and branched PEGs (with nominal molecular weights 5, 10, 20 and 40 kDa) were compared experimentally using size exclusion chromatography (SEC). PEG adduct:protein molecular weight ratios of the PEGylated proteins covered the range 1:12 to 6:1. Direct comparisons of experimentally measured viscosity radii were found to be misleading due to differences between actual and nominal molecular weights of the PEG reagents used. Comparison with predicted viscosity radii shows that there is no significant difference between the viscosity radii of branched and linear PEG-proteins having the same total molecular weight of PEG adducts. Therefore, longer in vivo circulation half-lives of branched PEG-proteins compared to linear PEG-proteins are not explained by size difference. It is also calculated that the molecular size cut-off for glomerular filtration, 60 A for a 30 kDa PEG, matches the 30-50 angstrom size range for the pores of the glomerular basement membrane, Finally, it is confirmed that prediction of PEG-protein viscosity radii should be based upon conservation of the total PEG adduct surface area to volume ratio for both linear and branched PEG-proteins regardless of PEGylation extent.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据