4.8 Article

Miniaturization and geometry optimization of a polymer-based rectilinear ion trap

期刊

ANALYTICAL CHEMISTRY
卷 79, 期 21, 页码 8076-8082

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac0711384

关键词

-

向作者/读者索取更多资源

The fabrication, operation, and characterization of a polymer-based rectilinear ion trap mass analyzer is, discussed. A novel, fast prototyping technique, stereolithography (SLA)-based fabrication, traditionally reserved for end use production parts and to fabricate master molds for rubber products, is applied here as a tool to create precise, arbitrary geometries. Taking full advantage of the SLA methodology, an open corner, polymer-based ion trap has been fabricated and tested. The use of a custom resin, Nanoform 15120 (DSM Somos, New Castle, DE), has resulted in a polymer with high heat deflection temperature and greater structural stability at higher temperatures and lower capacitance. The mass analyzer was mounted in a polymer holder and tested in a custom vacuum system using modified LCQ Duo (Thermo Fisher Corp.) electronics. The resolution, mass/charge range, and MS/ MS capabilities were examined using electrospray ionization as well as atmospheric pressure chemical ionization. In the course of this study, three traps of different sizes were fabricated, beginning with a full size device measuring 10 x 8 x 50 mm. The next two traps were scaled down by linear factors of a half and a third. SLA is shown to allow fabrication of light, small rectilinear ion traps, which are less expensive and have the same performance as traditional machined devices of the same size. In addition, smaller traps can be built just as easily, and they show unit mass resolution to mass 300, tandem mass spectrometry capabilities, and low power consumption.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据