4.7 Review

Molecular targeting of proteins by L-homocysteine: Mechanistic implications for vascular disease

期刊

ANTIOXIDANTS & REDOX SIGNALING
卷 9, 期 11, 页码 1883-1898

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ars.2007.1809

关键词

-

资金

  1. NHLBI NIH HHS [R37 HL052234-12, R37 HL052234] Funding Source: Medline

向作者/读者索取更多资源

Hyperhomocysteinemia is an independent risk factor for cardiovascular disease, complications of pregnancy, cognitive impairment, and osteoporosis. That elevated homocysteine leads to vascular dysfunction may be the linking factor between these apparently unrelated pathologies. Although a growing body of evidence suggests that homocysteine plays a causal role in atherogenesis, specific mechanisms to explain the underlying pathogenesis have remained elusive. This review focuses on chemistry unique to the homocysteine molecule to explain its inherent cytotoxicity. Thus, the high pKa of the sulfhydryl group (pKa, 10.0) of homocysteine underlies its ability to form stable disulfide bonds with protein cysteine residues, and in the process, alters or impairs the function of the protein. Studies in this laboratory have identified albumin, fibronectin, transthyretin, and metallothionein as targets for homocysteinylation. In the case of albumin, the mechanism of targeting has been elucidated. Homocysteinylation of the cysteine residues of fibronectin impairs its ability to bind to fibrin. Homocysteinylation of the cysteine residues of metallothionein disrupts zinc binding by the protein and abrogates inherent superoxide dismutase activity. Thus, S-homocysteinylation of protein cysteine residues may explain mechanistically the cytotoxicity of elevated L-homocysteine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据