4.7 Article

Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues

期刊

MICROBIAL ECOLOGY
卷 54, 期 4, 页码 753-760

出版社

SPRINGER
DOI: 10.1007/s00248-007-9239-9

关键词

-

向作者/读者索取更多资源

A pot experiment was conducted to examine the effect of arbuscular mycorrhizal fungus, Glomus fasciculatum, and salinity on the growth of Acacia nilotica. Plants were grown in soil under different salinity levels (1.2, 4.0, 6.5, and 9.5 dS m(-1)). In saline soil, mycorrhizal colonization was higher at 1.2, 4.0, and 6.5 dS m(-1) salinity levels in AM-inoculated plants, which decreased as salinity levels further increased (9.5 dS m(-1)). Mycorrhizal plants maintained greater root and shoot biomass at all salinity levels compared to nonmycorrhizal plants. AM-inoculated plants had higher P, Zn, and Cu concentrations than uninoculated plants. In mycorrhizal plants, nutrient concentrations decreased with the increasing levels of salinity, but were higher than those of the nonmycorrhizal plants. Mycorrhizal plants had greater Na concentration at low salinity levels (1.2, 4.0 dS m(-1)), which lowered as salinity levels increased (6.5, 9.5 dS m(-1)), whereas Na concentration increased in control plants. Mycorrhizal plants accumulated a higher concentration of K at all salinity levels. Unlike Na, the uptake of K increased in shoot tissues of mycorrhizal plants with the increasing levels of salinity. Our results indicate that mycorrhizal fungus alleviates deleterious effects of saline soils on plant growth that could be primarily related to improved P nutrition. The improved K/Na ratios in root and shoot tissues of mycorrhizal plants may help in protecting disruption of K-mediated enzymatic processes under salt stress conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据