4.7 Article

Ultrasmall mixed ferrite colloids as multidimensional magnetic resonance imaging, cell labeling, and cell sorting agents

期刊

BIOCONJUGATE CHEMISTRY
卷 18, 期 6, 页码 1763-1771

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bc070024w

关键词

-

资金

  1. NIAID NIH HHS [1 R43 AI063731-01A1] Funding Source: Medline

向作者/读者索取更多资源

One area that has been overlooked in the evolution of magnetic nanoparticle technology is the possibility of introducing informational atoms into the iron oxide core of the coated colloid. Introduction of suitable atoms into the iron oxide core offers an opportunity to produce a quantifiable probe, thereby adding one or more dimensions to the magnetic colloid's informational status. Lanthanide-doped iron oxide nanoparticles have been synthesized to introduce informational atoms through the formation of colloidal mixed ferrites. These colloids are designated ultrasmall mixed ferrite iron oxides (USMIOs). USMIOs containing 5 mol % europium exhibit superparamagnetic behavior with an induced magnetization of 56 emu/g Fe at 1.5 T, a powder X-ray diffraction pattern congruent with magnetite, and R-1 and R-2 relaxivity values of 15.4 (mM s)(-1) and 33.9 (mM s)(-1), respectively, in aqueous solution at 37 degrees C and 0.47 T. USMIO can be detected by five physical methods, combining the magnetic resonance imaging (MRI) qualities of iron with the sensitive and quantitative detection of lanthanide metals by neutron activation analysis (NA), time-resolved fluorescence (TRF), X-ray fluorescence, along with detection by electron microscopy (EM). In addition to quantitative detection using neutron activation analysis, the presence of lanthanides in the iron oxide matrix confers attractive optical properties for long-term multilabeling studies with europium and terbium. These USMIOs offer high photostability, a narrow emission band, and a broad absorption band combining the high sensitivity of time-resolved fluorescence with the high spatial resolution of MRI. USMIO nanoparticles are prepared through modifications of traditional magnetite-based iron oxide colloid synthetic methods. A 5 mol % substitution of ferric iron with trivalent europium yielded a colloid with nearly identical magnetic, physical, and chemical characteristics to its magnetite colloid parent.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据