4.5 Article

Glutamate and its metabotropic receptor in Drosophila clock neuron circuits

期刊

JOURNAL OF COMPARATIVE NEUROLOGY
卷 505, 期 1, 页码 32-45

出版社

WILEY
DOI: 10.1002/cne.21471

关键词

circadian clock; glutamate receptor; vesicular glutamate transporter; neuromodulation; inhibition; locomotor activity

向作者/读者索取更多资源

Identification of the neurotransmitters in clock neurons is critical for understanding the circuitry of the neuronal network that controls the daily behavioral rhythms in Drosophila. Except for the neuropeptide pigment-dispersing factor, no neurotransmitters have been clearly identified in the Drosophila clock neurons. Here we show that glutamate and its metabotropic receptor, DmGluRA, are components of the clock circuitry and modulate the rhythmic behavior pattern of Drosophila. The dorsal clock neurons, DN1s in the larval brain and some DN1s and DN3s in the adult brain, were immunolabeled with antibodies against Drosophila vesicular glutamate transporter (DvGluT), suggesting that they are glutamatergic. Because the DN1s may communicate with the primary pacemaker neurons, s-LN(v)s, we tested glutamate responses of dissociated larval s-LN(v)s by means of calcium imaging. Application of glutamate dose dependently decreased intracellular calcium in the s-LN(v)s. Pharmacology of the response suggests the presence of DmGluRA on the s-LN(v)s. Antibodies against DmGluRA labeled dissociated s-LN(v)s and the LNv dendrites in the intact larval and adult brain. The role of metabotropic glutamate signaling was tested in behavior assays in transgenic larvae and flies with altered DmGluRA expression in the LN(v)s and other clock neurons. Larval photophobic behavior was enhanced in DmGluRA mutants. For adults, we could induce altered activity patterns in the dark phase under LD conditions and increase the period during constant darkness by knockdown of DmGluRA expression in LN(v)s. Our results suggest that a glutamate signal from some of the DNs modulates the rhythmic behavior pattern via DmGluRA on the LN(v)s in Drosophila.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据