4.8 Article

Population and evolutionary dynamics of Helitron transposable elements in Arabidopsis thaliana

期刊

MOLECULAR BIOLOGY AND EVOLUTION
卷 24, 期 11, 页码 2515-2524

出版社

OXFORD UNIV PRESS
DOI: 10.1093/molbev/msm197

关键词

helitron; exon shuffling; ectopic recombination

向作者/读者索取更多资源

Helitrons, a recently discovered superfamily of DNA transposons that capture host gene fragments, constitute up to 2% of the Arabidopsis thaliana genome. In this study, we identified 565 insertions of a family of nonautonomous Helitrons, known as Basho elements. We aligned subsets of these elements, estimated their phylogenetic relationships, and used branch lengths to yield insight into the age of each Basho insertion. The age distribution suggests that 87% of Bashos inserted within 5 Myr, subsequent to the divergence between A. thaliana and its sister species Arabidopsis lyrata. We screened 278 of these insertions for their presence or absence in a sample of 47 A. thaliana accessions. With both phylogenetic and population frequency data, we investigated the effects of gene density, recombination rate, and element length on Basho persistence. Our analyses suggested that longer Basho copies are less likely to persist in the genome, consistent with selection against the deleterious effects of ectopic recombination between Basho elements. Furthermore, we determined that 39% of Basho elements contain fragments of expressed protein-coding genes, but all of these fragments were explained by only 5 gene-capture events. Overall, the picture of A. thaliana Helitron evolution is one of rapid expansion, relatively few gene-capture events, and weak selection correlated with element length.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据