4.5 Article

β2- and β3-Adrenoceptors activate glucose uptake in chick astrocytes by distinct mechanisms:: a mechanism for memory enhancement?

期刊

JOURNAL OF NEUROCHEMISTRY
卷 103, 期 3, 页码 997-1008

出版社

WILEY
DOI: 10.1111/j.1471-4159.2007.04789.x

关键词

astrocyte; chicken; glucose uptake; memory; beta(2)-adrenoceptor; beta(3)-adrenoceptor.

向作者/读者索取更多资源

Isoprenaline, acting at beta-adrenoceptors (ARs), enhances memory formation in single trial discriminated avoidance learning in day-old chicks by mechanisms involving alterations in glucose and glycogen metabolism. Earlier studies of memory consolidation in chicks indicated that beta(3)-ARs enhanced memory by increasing glucose uptake, whereas beta(2)-ARs enhance memory by increasing glycogenolysis. This study examines the ability of beta-ARs to increase glucose uptake in chick forebrain astrocytes. The beta-AR agonist isoprenaline increased glucose uptake in a concentration-dependent manner, as did insulin. Glucose uptake was increased by the beta(2)-AR agonist zinterol and the beta(3)-AR agonist CL316243, but not by the beta(1)-AR agonist RO363. In chick astrocytes, reverse transcription-polymerase chain reaction studies showed that beta(1)-, beta(2)-, and beta(3)-AR mRNA were present, whereas radioligand-binding studies showed the presence of only beta(2)- and beta(3)-ARs. beta-AR or insulin-mediated glucose uptake was inhibited by phosphatidylinositol-3 kinase and protein kinase C inhibitors, suggesting a possible interaction between the beta-AR and insulin pathways. However beta(2)- and beta(3)-ARs increase glucose uptake by two different mechanisms: beta(2)-ARs via a Gs-cAMP-protein kinase A-dependent pathway, while beta(3)-ARs via interactions with Gi. These results indicate that activation of beta(2)- and beta(3)-ARs causes glucose uptake in chick astrocytes by distinct mechanisms, which may be relevant for memory enhancement.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据