4.7 Article Proceedings Paper

Influence of surface charge and inner composition of porous nanoparticles to cross blood-brain barrier in vitro

期刊

INTERNATIONAL JOURNAL OF PHARMACEUTICS
卷 344, 期 1-2, 页码 103-109

出版社

ELSEVIER
DOI: 10.1016/j.ijpharm.2007.06.023

关键词

nanoparticles; blood-brain barrier; binding and uptake; transcytosis

向作者/读者索取更多资源

The aim of these studies was to evaluate the binding, uptake and transcytosis of 60 nm porous nanoparticles (NPs) that differed in their surface charge and inner composition on the blood-brain barrier (BBB). They were prepared from maltodextrins derived with or without a cationic ligand. In the cationic NPs an anionic lipid was inserted in their core to give DPPG-NPs. The data showed that at 4 degrees C the three NPs bind in different areas on endothelial cells: cationic NPs were found mainly around the paracellular area, while neutral NPs were mainly on the, cell surface and DPPG-NPs binding was found at both paracellular areas and on the surface of the cells. At 37 degrees C neutral and cationic NPs had similar degrees of binding and uptake and were transcytosed. Filipin treatment increased their binding and uptake suggesting that sterols are implied in their efflux. Neutral NPs transcytosis was also inhibited by filipin. This inhibition shows that neutral NPs, like LDL in this model, use the caveolae pathway. Neutral and cationic 60 nm porous NPs are potential candidates for drug delivery to the brain. (C) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据