4.8 Article

The monosaccharide transporter gene family in Arabidopsis and rice:: A history of duplications, adaptive evolution, and functional divergence

期刊

MOLECULAR BIOLOGY AND EVOLUTION
卷 24, 期 11, 页码 2412-2423

出版社

OXFORD UNIV PRESS
DOI: 10.1093/molbev/msm184

关键词

gene duplicate divergence; molecular clock; adaptive evolution; monosaccharide transporter; Arabdiopsis thaliana; Oryza sativa

资金

  1. NCRR NIH HHS [P20 RR016454] Funding Source: Medline

向作者/读者索取更多资源

Current hypotheses of gene duplicate divergence propose that surviving members of a gene duplicate pair may evolve, under conditions of purifying or nearly neutral selection, in one of two ways: with new function arising in one duplicate while the other retains original function (neofunctionalization [NF]) or partitioning of the original function between the 2 paralogs (subfunctionalization [SF]). More recent studies propose that SF followed by NF (subneofunctionalization [SNF]) explains the divergence of many duplicate genes. In this analysis, we evaluate these hypotheses in the context of the large monosaccharide transporter (MST) gene families in Arabidopsis and rice. MSTs have an ancient origin, predating plants, and have evolved in the seed plant lineage to comprise 7 subfamilies. In Arabidopsis, 53 putative MST genes have been identified, with one subfamily greatly expanded by tandem gene duplications. We searched the rice genome for members of the MST gene family and compared them with the MST gene family in Arabidopsis to determine subfamily expansion patterns and estimate gene duplicate divergence times. We tested hypotheses of gene duplicate divergence in 24 paralog pairs by comparing protein sequence divergence rates, estimating positive selection on codon sites, and analyzing tissue expression patterns. Results reveal the MST gene family to be significantly larger (65) in rice with 2 subfamilies greatly expanded by tandem duplications. Gene duplicate divergence time estimates indicate that early diversification of most subfamilies occurred in the Proterozoic (2500-540 Myr) and that expansion of large subfamilies continued through the Cenozoic (65-0 Myr). Two-thirds of paralog pairs show statistically symmetric rates of sequence evolution, most consistent with the SF model, with half of those showing evidence for positive selection in one or both genes. Among 8 paralog pairs showing asymmetric divergence rates, most consistent with the NF model, nearly half show evidence of positive selection. Positive selection does not appear in any duplicate pairs younger than similar to 34 Myr. Our data suggest that the NF, SF, and SNF models describe different outcomes along a continuum of divergence resulting from initial conditions of relaxed constraint after duplication.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据