4.8 Article

Cooperative mechanisms of fast-ion conduction in gallium-based oxides with tetrahedral moieties

期刊

NATURE MATERIALS
卷 6, 期 11, 页码 871-875

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nmat2039

关键词

-

资金

  1. Engineering and Physical Sciences Research Council [GR/S55507/01, GR/S55507/02, EP/D504929/1] Funding Source: researchfish

向作者/读者索取更多资源

The need for greater energy efficiency has garnered increasing support for the use of fuel-cell technology, a prime example being the solid-oxide fuel cell(1,2). A crucial requirement for such devices is a good ionic (O2- or H+) conductor as the electrolyte(3,4). Traditionally, fluorite- and perovskite-type oxides have been targeted(3-6), although there is growing interest in alternative structure types for intermediate-temperature (400-700 degrees C) solid-oxide fuel cells. In particular, structures containing tetrahedral moieties, such as La1-xCaxMO4-x/2(M= Ta, Nb, P) (refs 7,8), La1-xBa1+xGaO4-x/2 (refs 9,10) and La9.33+xSi6O26+3x/2 (ref. 11), have been attracting considerable attention recently. However, an atomic-scale understanding of the conduction mechanisms in these systems is still lacking; such mechanistic detail is important for developing strategies for optimizing the conductivity, as well as identifying next-generation materials. In this context, we report a combined experimental and computational modelling study of the La1-xBa1+xGaO4-x/2 system, which exhibits both proton and oxide-ion conduction(9,10). Here we show that oxide-ion conduction proceeds via a cooperative 'cog-wheel'-type process involving the breaking and re-forming of Ga2O7 units, whereas the rate-limiting step for proton conduction is intra-tetrahedron proton transfer. Both mechanisms are unusual for ceramic oxide materials, and similar cooperative processes may be important in related systems containing tetrahedral moieties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据