4.4 Article

Heterogeneous effects of dopamine on highly localized, voltage-induced Ca2+ accumulation in identified motoneurons

期刊

JOURNAL OF NEUROPHYSIOLOGY
卷 98, 期 5, 页码 2910-2917

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00660.2007

关键词

-

资金

  1. NCRR NIH HHS [P41 RR-04224] Funding Source: Medline
  2. PHS HHS [R37-17323] Funding Source: Medline

向作者/读者索取更多资源

Modulation of synaptic transmission is a major mechanism for the functional reconfiguration of neuronal circuits. Neurotransmitter release and, consequently, synaptic strength are regulated by intracellular Ca2+ levels in presynaptic terminals. In identified neurons of the lobster pyloric network, we studied localized, voltage-induced Ca2+ accumulation and its modulation in varicosities on distal neuritic arborizations, which have previously been shown to be sites of synaptic contacts. We previously demonstrated that dopamine (DA) weakens synaptic output from the pyloric dilator (PD) neuron and strengthens synaptic output from the lateral pyloric (LP) and pyloric constrictor (PY) neurons. Here we show that DA modifies voltage-activated Ca2+ accumulation in many varicosities in ways that are consistent with DA's effects on synaptic transmission: DA elevates Ca2+ accumulation in LP and PY varicosities and reduces Ca2+ accumulation in PD varicosities. However, in all three neuron types, we also found varicosities that were unaffected by DA. In the PY neurons, we found that DA can simultaneously increase and decrease voltage-evoked Ca2+ accumulation at different varicosities, even within the same neuron. These results suggest that regulation of Ca2+ entry is a common mechanism to regulate synaptic strength in the pyloric network. However, voltage-evoked local Ca2+ accumulation can be differentially modulated to control Ca2+- dependent processes in functionally separate varicosities of a single neuron.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据