4.3 Article

Histological examination of bone regeneration achieved by combining grafting with hydroxyapatite and thermoplastic bioresorbable plates

期刊

JOURNAL OF BONE AND MINERAL METABOLISM
卷 25, 期 6, 页码 361-373

出版社

SPRINGER JAPAN KK
DOI: 10.1007/s00774-007-0763-y

关键词

guided bone regeneration; osteoblast; osteoclast; bone remodeling; bone graft

向作者/读者索取更多资源

In this study, we present a novel guided bone regeneration (GBR) concept that consists of combining Boneject, a bone substitute containing atelocollagen and bovine hydroxyapatite particles, with thermoplastic, bioresorbable plates (DeltaSystem) known to resist mechanical loading. In rat calvariae, standardized bone defects were filled with Boneject and covered with a convex DeltaSystem plate. Tissue from rats at 1, 2, 4, 8, and 12 weeks postoperation were fixed with an aldehyde solution, and the new bone formed at the defects was histologically assessed. At 1 week, alkaline phosphatase (ALP)-negative cells deriving from the bottom region of the defect could be found up to half the height of the cavity. Boneject particle surfaces in the bottom region revealed an intense osteopontin immunopositivity whereas those in the upper region did not. Tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts accumulated on the surfaces of osteopontin-coated particles. A newly formed, woven-like bone featuring ALP-positive osteoblasts extended from the native bone. At the second week, the newly formed woven bone had surrounded the Boneject particles. Cement lines, which indicate active bone remodeling, could be observed in the new bone despite its immaturity. Four weeks after surgery, the new bone had reached the height of the DeltaSystem plate, and just beneath it a periostin-positive fibrous layer covered the mix of new bone and Boneject particles. By then, despite having acceptable histological features, electron probe microanalyzer (EPMA) and transmission electron microscope (TEM) analyses revealed that the new bone could not be regarded as compact bone. At 8 and 12 weeks, the new bone showed compact bone-like features according to TEM and EPMA assessments. Summarizing, the combination of a bone substitute such as Boneject and a rigid, bioresorbable plate appears to be osteoconductive and to promote bone remodeling, leading to the genesis of a tissue similar to the one that is regarded as the gold standard for bone regeneration: the compact bone.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据