4.4 Article Proceedings Paper

Key transitions in animal evolution: a mitochondrial DNA perspective

期刊

INTEGRATIVE AND COMPARATIVE BIOLOGY
卷 47, 期 5, 页码 734-743

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/icb/icm045

关键词

-

类别

向作者/读者索取更多资源

Animal mitochondrial DNA (mtDNA) is usually depicted as a small and very economically organized molecule with almost invariable gene content, stable gene order, a high rate of sequence evolution, and several unorthodox genetic features. Sampling across different animal phyla reveals that such a description applies primarily to mtDNA of bilaterian animals (such as arthropods or chordates). By contrast, mitochondrial genomes of nonbilaterian animals (phyla Cnidaria, Placozoa, and Porifera) display more variation in size and gene content and, in most cases, lack the genetic novelties associated with bilaterian mtDNA. Outside the Metazoa, mtDNA of the choanoflagellate Monosiga brevicollis, the closest unicellular out-roup, is a much larger molecule that contains a large proportion of noncoding DNA, 1.5 times more genes, as well as several introns. Thus, changes in animal mtDNA organization appear to correlate with two main transitions in animal evolution: the origin of multicellularity and the origin of the Bilateria. Studies of mtDNA in nonbilaterian animals provide valuable insights into these transitions in the organization of mtDNA and also supply data for phylogenetic analyses of the relationships of early animals. Here 1 review recent progress in the understanding of nonbilaterian mtDNA and discuss the advantages and limitations of mitochondrial data sets for inferences about the phylogeny and evolution of animals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据