4.5 Article

An investigation of possible causes of the holes in the condensational Venus cloud using a microphysical cloud model with a radiative-dynamical feedback

期刊

ICARUS
卷 191, 期 1, 页码 1-24

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.icarus.2007.04.007

关键词

Venus; atmospheres; structure; clouds

向作者/读者索取更多资源

Near-infrared observations of the nightside of Venus reveal regions of high brightness temperatures. These regions of high brightness temperatures are caused by the localized evaporation of the middle and lower cloud decks, which are about 50 to 60 km above the surface of the planet. We simulate the Venus condensational middle and lower cloud deck with the University of Colorado/NASA Ames Community Aerosol and Radiation Model for Atmospheres (CARMA). Our simulated clouds have similar characteristics to the observed Venus clouds. Our radiative transfer model reproduces the observed temperature structure and atmospheric stability structure within the middle cloud region. A radiative-dynamical feedback occurs which generates mixing due to increased absorption of upwelling infrared radiation within the lower cloud region, as previously suggested by others. We find that localized variations in temperature structure or in sub-grid scale mixing cannot directly explain the longevity and optical depth of the clouds. However, vertical motions are capable of altering the cloud optical depth by a sufficient magnitude in a short enough timescale to be responsible for the observed clearings. (C) 2007 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据