4.6 Article

Remapping attentional priorities: Differential contribution of superior parietal lobule and intraparietal sulcus

期刊

CEREBRAL CORTEX
卷 17, 期 11, 页码 2703-2712

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/cercor/bhl179

关键词

endogenous control; fMRI; perietal; shifting

资金

  1. NINDS NIH HHS [NS030863] Funding Source: Medline

向作者/读者索取更多资源

Seeking and selectively attending to significant extrapersonal stimuli in a dynamic environment requires the updating of an attentional priority map. Using functional magnetic resonance imaging, we investigated the role of posterior parietal cortex in such remappings of attentional priorities where the configuration, location, and significance of stimuli were systematically varied. Our data revealed a functional dissociation between 2 juxtaposed posterior parietal regions: one in the superior parietal lobule (SPL) and another in the intraparietal sulcus (IPS). SPL was preferentially activated in all conditions where a spatial displacement occurred in the location of the target, the location of the distracter, or the focus of attention (exogenous and endogenous shifts of spatial attention). Shifts of the attentional focus also activated the IPS but principally if they were guided endogenously by internal rules of relevance rather than stimulus displacement per se (endogenous attention shifts). Only the IPS region was activated by transient resetting of target significance when the stimulus configuration changed but the attentional focus remained spatially fixed (feature attention shifts). These 2 components of the largescale frontoparietal spatial attention network therefore have common and distinctive functions. In specific, the IPS component is more closely related to the compilation of an attentional priority map, including the endogenous recalibration of attentional weights. The SPL component, on the other hand, is more closely related to the modification of spatial coordinates linked to attentional priorities (spatial shifting). Collectively, these 2 areas allow posterior parietal cortex to dynamically encode extrapersonal events according to their spatial coordinates and valence.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据