4.6 Article

Enhancement of magnetic losses in hybrid polymer composites with MnZn-ferrite and conductive fillers

期刊

JOURNAL OF MATERIALS SCIENCE
卷 42, 期 22, 页码 9480-9490

出版社

SPRINGER
DOI: 10.1007/s10853-007-2081-0

关键词

-

向作者/读者索取更多资源

Polymer composites (PCs) with a polyurethane (PU) matrix filled with magnetic filler (MnZn ferrite) and hybrid polymer composites (HPCs) consisting of this magnetic filler and various types of conductive fillers (carbon black, carbon fibers, aluminum powder, polypyrrole) are prepared. The matrix structure of a HPC is formed (i) by a polymer filled with conductive filler, which forms the skeleton of an infinite cluster, and (ii) by ferrite particles that are larger than conductive particles. Thus, an HPC represents an ensemble of ferrite particles each of which is surrounded by a conductive medium and can be considered as a core-shell structure. The development of a core-shell structure is evidenced by the lower electric percolation threshold in an HPC compared with that in PU filled with conductive filler. Magnetic and dielectric spectra of PCs and HPCs are studied in the frequency range from 1 MHz to 10 GHz. Hybrid systems exhibit a considerable enhancement of magnetic losses compared with PCs. The enhancement of magnetic losses in HPCs is due to the conduction currents that are induced in the conductive shell by a microwave magnetic field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据