4.6 Article

The transcription factor Mrr1p controls expression of the MDR1 efflux pump and mediates multidrug resistance in Candida albicans

期刊

PLOS PATHOGENS
卷 3, 期 11, 页码 1603-1616

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.ppat.0030164

关键词

-

资金

  1. NIAID NIH HHS [AI058145, R01 AI058145, R21 AI058145, R01 AI058145-02] Funding Source: Medline

向作者/读者索取更多资源

Constitutive overexpression of the MDR1 ( multidrug resistance) gene, which encodes a multidrug efflux pump of the major facilitator superfamily, is a frequent cause of resistance to fluconazole and other toxic compounds in clinical Candida albicans strains, but the mechanism of MDR1 upregulation has not been resolved. By genome-wide gene expression analysis we have identified a zinc cluster transcription factor, designated as MRR1 ( multidrug resistance regulator), that was coordinately upregulated with MDR1 in drug-resistant, clinical C. albicans isolates. Inactivation of MRR1 in two such drug-resistant isolates abolished both MDR1 expression and multidrug resistance. Sequence analysis of the MRR1 alleles of two matched drug-sensitive and drug-resistant C. albicans isolate pairs showed that the resistant isolates had become homozygous for MRR1 alleles that contained single nucleotide substitutions, resulting in a P683S exchange in one isolate and a G997V substitution in the other isolate. Introduction of these mutated alleles into a drug-susceptible C. albicans strain resulted in constitutive MDR1 overexpression and multidrug resistance. By comparing the transcriptional profiles of drug-resistant C. albicans isolates and mrr1 Delta mutants derived from them and of C. albicans strains carrying wild-type and mutated MRR1 alleles, we defined the target genes that are controlled by Mrr1p. Many of the Mrr1p target genes encode oxidoreductases, whose upregulation in fluconazole-resistant isolates may help to prevent cell damage resulting from the generation of toxic molecules in the presence of fluconazole and thereby contribute to drug resistance. The identification of MRR1 as the central regulator of the MDR1 efflux pump and the elucidation of the mutations that have occurred in fluconazole-resistant, clinical C. albicans isolates and result in constitutive activity of this trancription factor provide detailed insights into the molecular basis of multidrug resistance in this important human fungal pathogen.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据