4.6 Article

Dynamics of the giant planets of the solar system in the gaseous protoplanetary disk and their relationship to the current orbital architecture

期刊

ASTRONOMICAL JOURNAL
卷 134, 期 5, 页码 1790-1798

出版社

IOP PUBLISHING LTD
DOI: 10.1086/521705

关键词

planets and satellites : formation; solar system : formation

向作者/读者索取更多资源

We study the orbital evolution of the four giant planets of our solar system in a gas disk. Our investigation extends the previous works by Masset & Snellgrove and Morbidelli & Crida, which focused on the dynamics of the Jupiter-Saturn system. The only systems we found to reach a steady state are those in which the planets are locked in a quadruple mean-motion resonance ( i.e., each planet is in resonance with its neighbor). In total, we found six such configurations. For the gas-disk parameters found in Morbidelli & Crida, these configurations are characterized by a negligible migration rate. After the disappearance of the gas, and in the absence of planetesimals, only two of these six configurations ( the least compact ones) are stable for a time of hundreds of millions of years or more. The others become unstable on a timescale of a few Myr. Our preliminary simulations show that, when a planetesimal disk is added beyond the orbit of the outermost planet, the planets can evolve from the most stable of these configurations to their current orbits in a fashion qualitatively similar to that described in Tsiganis et al.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据