4.4 Article

Structural and electrical characterization of carbon nanofibers for interconnect via applications

期刊

IEEE TRANSACTIONS ON NANOTECHNOLOGY
卷 6, 期 6, 页码 688-695

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNANO.2007.907400

关键词

carbon nanofiber; interconnects; via

向作者/读者索取更多资源

We present temperature-dependent electrical characteristics of vertically aligned carbon nanofiber (CNF) arrays for on-chip interconnect applications. The study consists of three parts. First, the electron transport mechanisms in these structures are investigated using I-V measurements over a broad temperature range (similar to 4.4 K to 350 K). The measured resistivity in CNF arrays is modeled based on known graphite two-dimensional hopping electron conduction mechanism. The model is used because of the disordered graphite structure observed during high-resolution scanning transmission electron microscopy (STEM) of the CNF and CNF-metal interface. Second, electrical reliability measurements are performed at different temperatures to demonstrate the robust nature of CNFs for interconnect applications. Finally, some guidance in catalyst material selection is presented to improve the nanostructure of CNFs, making the morphology similar to multiwall nanotubes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据