4.3 Article

Evolution of complex life cycles of amphibians: bridging the gap between metapopulation dynamics and life history evolution

期刊

EVOLUTIONARY ECOLOGY
卷 21, 期 6, 页码 751-764

出版社

SPRINGER
DOI: 10.1007/s10682-006-9149-1

关键词

amphibians; complex life cycles; metamorphosis; metapopulations; evolutionary constraints

向作者/读者索取更多资源

Current evolutionary models for amphibian life cycles reflect tradeoffs in size-specific growth and mortality rates between the aquatic and terrestrial stages. A limitation of these models is that they do not incorporate evolutionary phenomena that are associated with metapopulation structure. In this work I address components of the evolution of complex life cycles (CLCs) that are tied to the metapopulation dynamics of amphibians that use seasonal wetlands that vary in hydroperiod. In particular, I describe how selection for the minimum length of the larval period affects metapopulation viability and the selection/migration equilibrium. Selection to increase the minimum length of the larval period functionally reduces the number of viable breeding sites on the landscape, increases the average distance between neighboring sites, and increases the risk of metapopulation extinction. Within a metapopulation, asymmetric gene flow between populations that are adapted to different hydroperiods tends to swamp local selection for long larval periods at sites with long hydroperiods. The evolutionary stability of CLCs of many species with metapopulation structure may reflect the fact that extremely small metamorphs cannot survive on land, while lineages with long larval periods incur a high risk of metapopulation extinction. I encourage theorists to more carefully consider how life history traits and metapopulation viability are related for these and other taxa.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据