4.5 Article

Oncostatin M-induced effects on EMT in human proximal tubular cells:: differential role of ERK signaling

期刊

AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY
卷 293, 期 5, 页码 F1714-F1726

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajprenal.00130.2007

关键词

-

向作者/读者索取更多资源

Growing evidence suggests that a proportion of interstitial myofibroblasts detected during renal tubulointerstitial fibrosis originates from tubular epithelial cells by a process called epithelial-mesenchymal transition (EMT). The IL-6-type cytokine oncostatin M (OSM) has been recently implicated in the induction of EMT. We investigated OSM effects on the expression of both cell-cell contact proteins and mesenchymal markers and studied OSM-induced intracellular signaling mechanisms associated with these events in human proximal tubular cells. Human recombinant OSM attenuated the expression of N-cadherin, E-cadherin, and claudin-2 in human kidney-2 (HK-2) cells associated with the induction of HK-2 cell scattering in 3D collagen matrices. Conversely, expression of collagen type I, vimentin, and S100A4 was induced by OSM. OSM-stimulated cell scattering was inhibited by antibodies against gp130. Besides inducing phosphorylation of Stat1 and Stat3, OSM led to a strong concentrationand time-dependent phosphorylation of the mitogen-activated protein kinases ERK1, ERK2, and ERK5. MEK1/2 inhibitor U0126 (10 mu M) blocked basal and OSM-induced ERK1/2 phosphorylation but not phosphorylation of either ERK5 or Stat1/3. Both synthetic MEK1/2 inhibitors U0126 and Cl-1040, when used at concentrations which inhibit ERK1/2 phosphorylation but not ERK5 phosphorylation, restored N-cadherin expression in the presence of OSM, inhibited basal claudin-2 expression, but did not affect either basal or OSM-inhibited E-cadherin expression or OSM-induced expression of collagen type I and vimentin. These results suggest that in human proximal tubular cells ERK1/2 signaling represents an important component of OSM's inhibitory effect on N-cadherin expression. Furthermore, functional ERK1/2 signaling is necessary for basal claudin-2 expression.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据