4.7 Article

Identification of soybean genes involved in circadian clock mechanism and photoperiodic control of flowering time by In silico analyses

期刊

JOURNAL OF INTEGRATIVE PLANT BIOLOGY
卷 49, 期 11, 页码 1640-1653

出版社

WILEY
DOI: 10.1111/j.1774-7909.2007.00567.x

关键词

circadian clock; cryptochrome; data mining; flowering; photoperiod; phytochrome

向作者/读者索取更多资源

Glycine max is a photoperiodic short-day plant and the practical consequence of the response is latitude and sowing period limitations to commercial crops. Genetic and physiological studies using the model plants Arabidopsis thaliana and rice (Oryza sativa) have uncovered several genes and genetic pathways controlling the process, however information about the corresponding pathways in legumes is scarce. Data mining prediction methodologies, including multiple sequence alignment, phylogenetic analysis, bioinformatics expression and sequence motif pattern identification, were used to identify soybean genes involved in day length perception and photoperiodic flowering induction. We have investigated approximately 330 000 sequences from open-access databases and have identified all bona fide central oscillator genes and circadian photoreceptors from A. thaliana in soybean sequence databases. We propose a working model for the photoperiodic control of flowering time in G. max, based on the identified key components. These results demonstrate the power of comparative genomics between model systems and crop species to elucidate the several aspects of plant physiology and metabolism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据