4.5 Article

The evolution of trophic structure

期刊

HEREDITY
卷 99, 期 5, 页码 494-505

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.hdy.6801032

关键词

food web; coevolution; predator -prey; complex systems; individual-based model

向作者/读者索取更多资源

The trophic relationships of an ecological community were represented by digital individuals consuming resources or prey within a simulated ecosystem and producing offspring that may differ from their parents. When individuals meet, a few simple rules are used to decide the outcome of their interaction. Trophically complex systems persist for long periods of time even in finite communities, provided that the strength of predator-prey interaction is sufficient to repay the cost of maintenance. The topology of the food web and important system-level attributes such as overall productivity follow from the rules of engagement: that is, the macroscopic properties of the ecosystem follow from the microscopic attributes of individuals, without the need to invoke the emergence of novel processes at the level of the whole system. Evolutionarily stable webs exist only when the pool of available species is small. If the pool is large, or speciation is allowed, species composition changes continually, while overall community properties are maintained. Ecologically separate and topologically different source webs based on the same pool of resources usually coexist for long periods of time, through negative frequency-dependent selection at the level of the source web as a whole. Thus, the evolved food web of species-rich communities is a highly dynamic structure with continual species turnover. It both imposes selection on each species and itself responds to selection, but selection does not necessarily maximize stability, productivity or any other community property.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据