4.8 Article

The effect of gas plasma modification on platelet and contact phase activation processes

期刊

BIOMATERIALS
卷 28, 期 31, 页码 4561-4570

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2007.07.008

关键词

polymers; haemocompatibility; platelet; microparticle; coagulation

向作者/读者索取更多资源

Medical-grade polytetrafluoroethylene (PTFE), polydimethylsiloxane (PDMS), polyetherurethane (PEU) and ultrahigh molecular weight polyethylene (UHMWPE) were plasma treated with O-2, Ar, N-2 and NH3. Their surface properties were characterised using X-ray photoelectron spectroscopy (XPS), static secondary ion mass spectroscopy (SSIMS), atomic force microscopy (AFM) and dynamic contact angle (DCA) analysis. Platelet adhesion, aggregation, activation and release of microparticles were determined after contact with whole blood in a cone and plate viscometer. Activation of the coagulation system was quantified in a static environment using a partial thromboplastin time (PTT) assay. The chemical compositions of the untreated surfaces were found to be very similar to those of the bulk material except for PEU, whose surface was comprised almost entirely of soft ether segments. For all materials, the different plasma treatments resulted in moderate etching with the incorporation of functional groups and removal of side groups: defluorination, dehydrogenation, cleavage of methyl side groups and soft segments for PTFE, UHMWPE, PDMS and PEU, respectively. Consequently, plasma treatment resulted in increased wettability in all cases. Blood contact with the virgin materials resulted in activation of platelets and the clotting cascade. Plasma treatment resulted in a significant reduction in platelet adhesion for all materials and all treatments. In the case of PTFE and PEU, the activation status of these cells was also reduced. Plasma treatment of all materials reduced fluid-phase CD62P expression. Platelet aggregate size correlated well with degree of aggregate formation, but many treatments increased the degree of aggregation, as was the case for microparticle shedding. There was no correlation between CD62P expression, aggregate formation and platelet microparticle (PMP) shedding. It is concluded that despite incorporation of the same chemical groups, the pattern of response to blood in vitro is not the same across different polymers. (c) 2007 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据