4.7 Article

Altered pattern of Cul-1 protein expression and neddylation in human lung tumours: relationships with CAND I and cyclin E protein levels

期刊

JOURNAL OF PATHOLOGY
卷 213, 期 3, 页码 303-310

出版社

JOHN WILEY & SONS LTD
DOI: 10.1002/path.2223

关键词

Cul-1; cyclin E; lung tumours; neddylation; Skp2

向作者/读者索取更多资源

The Cul-1 protein is the scaffold element of SCF complexes that are. involved in the proteasomal degradation of numerous proteins regulating cell cycle progression. Owing to this central role in cell growth control, aberrant expression of the components of SCF is thought to play a role during tumourigenesis. Nothing is known about Cul-1 expression in human tumours. In this study, we have analysed its status in a series of 128 human lung carcinomas, comprising 50 non-small cell lung cancers. (NSCLCS; 29 squamous cell carcinomas and 21 adenocarcinomas) and 78 neuroendocrine (NE) lung tumours (24 typical and atypical carcinoids, 19 large cell NE carcinomas and 35 small cell lung carcinomas), using immunohistochemistry. We report for the first time an altered pattern of Cul-1 expression in human tumours; indeed, we show that Cul-1 expression is up-regulated in 40% (51/128) of all lung tumours as compared to normal lung tissues, including 34% (17/50), 75% (18/24) and 30% (16/54) of NSCLCs, carcinoids and high grade neuroendocrine lung carcinomas, respectively. Furthermore, we demonstrate that high levels of Cul-1 protein are associated with a low K167 proliferative index (p = 0.005) and with a decrease in the cyclin E oncoprotein (p = 0.0003), one of the major targets of SCF complexes. These data suggest that up-regulation of Cul-1 could protect cells from hyperproliferative signals through cyclin E down-regulation. Cul-1 is modified by neddylation, a post-translational modification that grafts ubiquitin-like Nedd8/Rub1 residues and controls Cul-1 activity. We also provide evidence that neddylated forms of Cul-1 are specifically expressed in high-grade NE lung tumours and are associated with down-regulation of the Cul-1 inhibitor CAND1 (P = 0.03) and a high level of cyclin E (p = 0.0002). These data support the notion that alterations in the Cul-1 neddylation/deneddylation pathway could contribute to the development of these highly aggressive lung tumours. Copyright (C) 2007 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据