4.7 Article

Cholinergic modulation of Kir2 channels selectively elevates dendritic excitability in striatopallidal neurons

期刊

NATURE NEUROSCIENCE
卷 10, 期 11, 页码 1458-1466

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nn1972

关键词

-

资金

  1. NINDS NIH HHS [NS 34696] Funding Source: Medline

向作者/读者索取更多资源

Dopamine-depleting lesions of the striatum that mimic Parkinson's disease induce a profound pruning of spines and glutamatergic synapses in striatopallidal medium spiny neurons, leaving striatonigral medium spiny neurons intact. The mechanisms that underlie this cell type-specific loss of connectivity are poorly understood. The Kir2 K+ channel is an important determinant of dendritic excitability in these cells. Here we show that opening of these channels is potently reduced by signaling through M1 muscarinic receptors in striatopallidal neurons, but not in striatonigral neurons. This asymmetry could be attributed to differences in the subunit composition of Kir2 channels. Dopamine depletion alters the subunit composition further, rendering Kir2 channels in striatopallidal neurons even more susceptible to modulation. Reduced opening of Kir2 channels enhances dendritic excitability and synaptic integration. This cell type-specific enhancement of dendritic excitability is an essential trigger for synaptic pruning after dopamine depletion, as pruning was prevented by genetic deletion of M1 muscarinic receptors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据