4.6 Article

Formation and dissolution of D-N complexes in dilute nitrides

期刊

PHYSICAL REVIEW B
卷 76, 期 20, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.76.205323

关键词

-

向作者/读者索取更多资源

Deuterium (hydrogen) incorporation in dilute nitrides (e.g., GaAsN and GaPN) modifies dramatically the crystal's electronic and structural properties and represents a prominent example of defect engineering in semiconductors. However, the microscopic origin of D-related effects is still an experimentally unresolved issue. In this paper, we used nuclear reaction analyses and/or channeling, high resolution x-ray diffraction, photoluminescence, and x-ray absorption fine structure measurements to determine how the stoichiometric [D]/[N] ratio and the local structure of the N-D complexes parallel the evolution of the GaAsN electronic and strain properties upon irradiation and controlled removal of D. The experimental results provide the following picture: (i) Upon deuteration, nitrogen-deuterium complexes form with [D]/[N]=3, leading to a neutralization of the N electronic effects in GaAs and to a strain reversal (from tensile to compressive) of the N-containing layer. (ii) A moderate annealing at 250 degrees C gives [D]/[N]=2 and removes the compressive strain, therefore the lattice parameter approaches that of the N-free alloy, whereas the N-induced electronic properties are still passivated. (iii) Finally, annealings at higher temperature (330 degrees C) dissolve the deuterium-nitrogen complexes, and consequently the electronic properties and the tensile strain of the as-grown GaAsN lattice are recovered. Therefore, we conclude that the complex responsible for N passivation contains two deuterium atoms per nitrogen atom, while strain reversal in deuterated GaAsN is due to a complex with a third, less tightly bound deuterium atom.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据