4.7 Article

Prediction of the structure of complexes comprised of proteins and glycosaminoglycans using docking simulation and cluster analysis

期刊

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
卷 3, 期 6, 页码 2347-2356

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ct700029q

关键词

-

向作者/读者索取更多资源

A typical docking simulation provides information on the structure of ligand-receptor complexes and their binding affinity in terms of a docking energy. We have developed a potent method combining a docking simulation with cluster analysis to extract adequate docking structures from the many possible output structures of the simulation. First, we tried to predict the structure of basic fibroblast growth factor (bFGF) bound to heparin, using the docking simulation program AutoDock 3.0. Two X-ray crystal structures had already been obtained for bFGF. One was a complex of the protein and heparin, a kind of glycosaminoglycan, and the other, only the protein itself, hereafter called a simplex. We docked a heparin molecule onto the protein simplex and generated many trial structures for the bFGF-heparin complex. The structures of those docked complexes were optimized through energy minimization by AMBER8. Although neither the docking energy calculated by AMBER8 nor that calculated by AutoDock 3.0 could be used satisfactorily by themselves to select a proper heparin-binding complex from the output structures, the majority of the structures generated by AutoDock 3.0 were fairly close to each other in atom geometry, and the averaged geometry over these structures was also close to that of the crystal. Hence, we utilized only the atom geometry for evaluation and carried out cluster analysis with the collection of geometries. This procedure enabled selection of a structure considerably close to the crystal's. We applied this approach to two other heparin-binding proteins: antithrombin and annexin V. Two crystal structures, a complex and a simplex, had been elucidated for these proteins as well as for bFGF. Our trials gave an exact prediction of the heparin-binding structures of these proteins, showing the approach in this study is effective in studying the docking of ligands that have a variety of docking conformations due to the presence of multiple rotatable bonds and charged chemical groups.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据