4.5 Article

P2X receptors-mediated cytosolic phospholipase A2 activation in primary afferent sensory neurons contributes to neuropathic pain

期刊

JOURNAL OF NEUROCHEMISTRY
卷 103, 期 4, 页码 1408-1416

出版社

WILEY
DOI: 10.1111/j.1471-4159.2007.04861.x

关键词

cytosolic phospholipase A(2); neuropathic pain; P2X receptor; primary afferent sensory neurons

向作者/读者索取更多资源

Activation of P2X(3) and P2X(2/3) receptors (P2X(3)R/P2X(2/3)R), ionotropic ATP receptor subtypes, in primary sensory neurons is involved in neuropathic pain, a debilitating chronic pain that occurs after peripheral nerve injury. However, the underlying mechanisms remain unknown. We investigated the role of cytosolic phospholipase A(2) (cPLA(2)) as a downstream molecule that mediates the P2X(3)R/P2X(2/3)R-dependent neuropathic pain. We found that applying ATP to cultured dorsal root ganglion (DRG) neurons increased the level of Ser505-phosphorylated cPLA(2) and caused translocation of Ser505-phosphorylated cPLA(2) to the plasma membrane. The ATP-induced cPLA(2) activation was inhibited by a selective antagonist of P2X(3)R/P2X(2/3)R and by a selective inhibitor of cPLA(2). In the DRG in vivo, the number of cPLA(2)-activated neurons was strikingly increased after peripheral nerve injury but not after peripheral inflammation produced by complete Freund's adjuvant. Pharmacological blockade of P2X(3)R/P2X(2/3)R reversed the nerve injury-induced cPLA(2) activation in DRG neurons. Moreover, administering the cPLA(2) inhibitor near the DRG suppressed nerve injury-induced tactile allodynia, a hallmark of neuropathic pain. Our results suggest that P2X(3)R/P2X(2/3)R-dependent cPLA(2) activity in primary sensory neurons is a key event in neuropathic pain and that cPLA(2) might be a potential target for treating neuropathic pain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据